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Abstract

Recent advancements in embodied intelligence and robotics have witnessed groundbreaking
innovations across hardware and AI model architectures. While significant progress has been
made in specialized foundation models for reasoning, multi-modal perception, manipula-
tion and locomotion, there remains a critical gap in unified platforms capable of seamless
cross-embodiment deployment for real-world robot applications. We present TAIROS, a
comprehensive embodied AI platform that integrates multi-modal perception, long-horizon
planning, and dexterous action capabilities into a unified modular architecture. Building
upon state-of-the-art LLM, VLM, and VLA models, TAIROS features three interoperable
modules: Embodied Perception, Embodied Planning, and Perception-Action, designed for
both integrated agent deployment and standalone functionality. Our platform demonstrates
exceptional generalization across diverse robotic embodiments (humanoids, quadrupeds,
bi-manual manipulators) and real-world tasks including complex manipulation, dynamic
locomotion, and multi-modal interaction. Extensive validation on industrial and domestic
scenarios confirms TAIROS’s capabilities in bridging the gap between AI advancements and
physical-world applications.

1. Introduction

The advent of foundation models has ushered in a new paradigm for artificial intelligence
systems, with transformative impacts across vision, language, and decision-making domains.
These models, trained in Internet-scale datasets that encompass trillions of tokens and millions
of images, have demonstrated unprecedented generalization and adaptation capabilities.
Seminal works like GPT-4 [1] and Gemini [2] have shown how large-scale pretraining can yield
models that transfer effectively to downstream tasks with minimal fine-tuning. Particularly
in embodied intelligence and robotics, foundation models offer the promise of overcoming
longstanding challenges in generalization, sample efficiency, and multi-modal understanding
that have constrained traditional approaches.

Embodied intelligence represents an interdisciplinary field that integrates mechanical
engineering, embodiment design, control theory, and AI. The rapid advancement of foundation
models in AI has recently led to the emergence of numerous specialized models addressing
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different aspects of embodied intelligence, which can be broadly categorized into four types:
multi-modal foundation models for embodied perception and navigation, large language
models for embodied reasoning, vision-language-action (VLA) models for manipulation, and
simulation-based reinforcement learning for locomotion and whole-body control (WBC).

1.1. Multi-modal Foundation Models
In recent years, multi-modal foundation models have made significant advances, driven

by breakthroughs in cross-modal semantic understanding. The introduction of CLIP [3]
marked a milestone by mapping images and text into a shared embedding space through
contrastive learning, laying the groundwork for unified multi-modal representations. Building
on this foundation, OpenAI launched DALL·E [4], which pioneered the use of diffusion
models for text-to-image generation and opened a new chapter in generative multi-modal
modeling. Concurrently, Google introduced the Vision Transformer (ViT) [5], which brought
the Transformer architecture to the visual domain, replacing traditional CNNs and providing
a unified backbone for multi-modal integration. This architectural innovation paved the way
for more scalable and flexible multi-modal models. Subsequently, Google released PaLM-E [6],
a large-scale model that integrates text, images, and robotic sensor data, scaling up to 562
billion parameters. PaLM-E represents a significant step toward embodied intelligence by
enabling a closed loop from perception to action within a single model.

In the field of perception, foundation models have also achieved remarkable progress.
Meta’s Segment Anything Model (SAM) [7] was the first general-purpose image segmentation
foundation model, demonstrating strong zero-shot generalization and enhancing object
segmentation in areas such as autonomous driving and robotics. Its successor, SAM2 [8],
further improved efficiency and accuracy, enabling object segmentation from video streams
and showing great potential in real-world robotic perception. However, both SAM and
SAM2 lack comprehensive scene-level semantic understanding, which limits their application
in more complex tasks and necessitates integration with visual classification models. To
address the need for open-vocabulary and text-guided object detection, models such as
Grounding DINO [9] and YOLO-World [10] have emerged. Grounding DINO leverages a
multi-modal transformer architecture to achieve deep cross-modal fusion, enabling zero-shot
object localization based on textual descriptions without additional training. In contrast,
YOLO-World extends the traditional YOLO framework with vision-language pretraining,
focusing on real-time, open-vocabulary object detection for practical deployment.

As detection and segmentation models evolve, a new trend has emerged: directly integrat-
ing visual information into large language models to create multi-modal foundation models.
This integration enables richer visual-language interaction and reasoning, pushing VLMs
toward general artificial intelligence and embodied intelligence applications. For example,
OpenAI’s GPT-4o [1] extends language models with visual input capabilities, supporting
complex reasoning and generation that combines images and text. Similarly, Qwen2.5-
VL [11] emphasizes comprehensive vision-language understanding across images, videos, text,
and structured layouts, while VLN-Game [12] combines pretrained vision-language features
with 3D mapping and game-theoretic target matching to enable zero-shot visual-language
navigation.
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Building on these advances, recent research has begun to explore the application of multi-
modal foundation models in embodied intelligence scenarios. For instance, ConceptGraphs [13]
proposes an efficient open-vocabulary 3D scene graph representation that optimizes storage
and scalability by focusing features on object nodes. Werby et al. [14] further developed
a hierarchical open-vocabulary 3D scene graph approach, enabling robots to understand
objects and their spatial relationships in complex environments and to follow natural language
instructions more effectively.

Within the TAIROS platform, our Embodied Perception Module builds on these state-of-
the-art multi-modal foundation models to deliver enhanced visual-language understanding and
memory. This unified framework bridges perception and action, enabling more sophisticated
scene interpretation and task execution across a wide range of robotic applications.

1.2. Embodied Reasoning using LLMs
In the domain of embodied reasoning using large language models (LLMs), current research

has evolved along several distinct yet complementary technical pathways. The first category
adopts hierarchical architectures that decouple high-level planning from low-level execution,
exemplified by frameworks like DEDER [15] which distills complex reasoning from LLMs into
smaller, resource-efficient models through a two-tier policy structure and embodied knowledge
graph. Similarly, Environment Preference Optimization (EPO) [16] introduces a novel
hierarchical framework that decomposes long-horizon tasks into sub-goals while leveraging
multi-modal environment feedback to generate automated training signals, achieving state-of-
the-art performance on established benchmarks like ALFRED. Another notable approach,
EmbodiedAgent [17], addresses multi-robot coordination challenges through a structured
memory system that validates actions against environmental constraints, supported by the
MultiPlan+ dataset and RPAS assessment schema.

Many another approaches focus on enhancing multi-modal understanding through tighter
vision-language integration. PlanLLM [18] pioneers cross-modal joint learning by connecting
world-level common sense with visual states via mutual information maximization, demon-
strating robust performance in both closed-set and open-vocabulary scenarios. Parallel efforts
have developed frameworks that concurrently process visual and linguistic planning signals to
overcome spatial imagination limitations in pure LLM-based approaches [19]. The TaPA [20]
framework further advances this direction by grounding LLM-generated plans in physical
scene constraints through visual perception integration, while Robo2VLM [21] contributes a
data generation pipeline that derives VQA queries from real robot trajectories to improve
spatial reasoning in vision-language models.

Task decomposition and adaptive planning constitute another focus of research. Recent
innovations include multi-modal grounded planning systems that achieve data-efficient learning
in complex environments [22], and Egocentric Planning which combines symbolic planning
with Object-oriented POMDPs for scalable task achievement [23]. The InterPreT [24]
framework enables robots to learn symbolic predicates from non-expert language feedback,
facilitating generalization to novel tasks. SMART-LLM [25] demonstrates how LLMs can
coordinate multi-robot systems through programmatic task decomposition and coalition
formation, while MPO [26] introduces meta-plans reusable high-level templates optimized
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via execution feedback. The Embodied-Reasoner [27] extends visual search and reasoning to
interactive tasks through a three-stage training pipeline, and PRED [28] enhances robustness
by preemptively revising actions based on environmental discrepancy detection.

Benchmark development remains critical for evaluating progress in embodied planning.
The Embodied Agent Interface [29] establishes standardized evaluation using Linear Temporal
Logic to systematically assess 18 LLMs across key tasks such as goal interpretation and action
sequencing. However, there remains a notable scarcity of large-scale benchmarks in this
domain. To address this critical gap, we propose a novel benchmark specifically designed for
evaluating complex long-horizon planning tasks, which will serve as a comprehensive testbed
for assessing various foundational planning models of embodied intelligence.

The most analogous to the Embodied Planning Module in the present work is Cooperative
Embodied Language Agent (CoELA) [30], a modular framework that integrates perception,
memory, and communication modules for decentralized multi-agent collaboration. These
advancements collectively push the boundaries of embodied AI by addressing fundamental
challenges in reasoning, perception, and adaptive execution across diverse real-world scenarios.

1.3. Vision-Language-Action Models
Another significant line of research adopts an end-to-end approach to embodied intelligence

through the Vision-Language-Action (VLA) paradigm, which heavily relies on robotics data
typically collected via teleoperation or similar methods. RT-1 [31] pioneered transformer-based
robot control through its discretized action transformer architecture, utilizing EfficientNet for
visual processing and demonstrating scalable multi-task kitchen manipulation. Building upon
this foundation, RT-2 [32] achieved breakthrough capabilities as the first vision-language-
action model co-finetuned on both internet-scale visual question answering data and robotic
manipulation data, employing PaLI-X architecture components.

Alternative approaches have demonstrated complementary strengths. SayCan [33] estab-
lished a paradigm combining large language model planning with value function grounding,
using PaLM [6] for high-level goal interpretation. ACT [34] introduced temporal ensem-
bling and action chunking to achieve sub-millimeter precision in bimanual manipulation
through its CVAE-Transformer architecture. The emergence of diffusion-based methods
began with Diffusion Policy, which modeled multimodal action distributions and later incor-
porated UMI [35] framework improvements. Octo [36] set new benchmarks as a generalist
diffusion policy trained on over 4 million trajectories across 22 platforms using the Open
X-Embodiment dataset. OpenVLA [37] demonstrated efficient transfer through LLaMA-2
adaptation with DINOv2/SigLIP visual encoders. RDT-1B [38] advanced diffusion models
through its 1.2B-parameter architecture featuring a unified action space representation.

More recently, π0 [39] implemented flow matching for high-frequency control using
PaliGemma components and demonstrated exceptional cross-platform deployment capabilities
for robotic manipulation tasks. FAST[40] introduced frequency-space action tokenization
for 15x inference acceleration. Gemini Robotics leveraged Gemini 2.0 foundation model
capabilities for dexterous manipulation. Helix [41] achieved 200Hz humanoid control through
optimized transformer policies, while GR00T [42] developed a unified diffusion framework for
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humanoid systems using Eagle-2 VLM components based on real-world robot data and exten-
sive IsaacSim data. These advances collectively demonstrate rapid progress along multiple
dimensions: scaling through foundation model approaches, specialization for particular control
regimes, and novel architectural innovations in action representation and policy learning.

Our Perception-Action Module adopts π0 as its foundational architecture. The module’s
implementation involves a two-phase training approach: initializing with the pre-trained π0

model’s parameters followed by domain-specific post-training using our proprietary dataset
collected through extensive teleoperation and simulation experiments. This dataset com-
prises multi-modal observations paired with corresponding action trajectories across diverse
manipulation tasks, enabling the model to maintain π0’s robust generalization capabilities
while adapting to our target operational environments and task requirements.

1.4. Locomotion and Whole-Body Control
For locomotion and whole-body control (WBC), the dominant technical route involves

simulation-based learning with sim2real transfer. Lifelike [43] demonstrated this by training
locomotion policies by tracking motion capture data before deploying to quadruped robots.
OmniH2O [44] enabled both teleoperation and autonomous control of full-size humanoids
through GPT-4o or learned policies. BeamDojo [45] introduced specialized rewards for
polygonal feet locomotion, and various frameworks like Exbody2 [46], HoST [47], and
GMT [48] advanced whole-body control through innovative training methodologies combining
RL, behavior cloning, and motion prior integration. HOVER [49] and ASAP [50] further
pushed the boundaries of agile humanoid motion through unified policy distillation and delta
action learning for easier robot deployment. Our locomotion model follows the simulation-
based learning route, with the primary objective of developing a more universal training
pipeline capable of rapid cross-platform adaptation without requiring robot-specific parameter
tuning.

1.5. Summary
While the field of embodied intelligence has witnessed significant progress across multiple

research directions, there remains a notable absence of comprehensive systems capable of
addressing all these aspects in an integrated manner. The TAIROS platform proposed in this
work represents a holistic system encompassing perception, planning, and execution capabili-
ties through three core functional modules: the Embodied Perception Module, Embodied
Planning Module, and Perception-Action Module. These modules are seamlessly integrated
through standardized interfaces to form a unified embodied intelligence agent capable of
executing end-to-end robotic tasks with cross-platform adaptability. Robot platforms meeting
hardware specifications can directly access TAIROS services through API calls or SDK-based
edge deployment. Importantly, the platform maintains flexible modularity, allowing each
component to be independently invoked for specific functions such as visual question an-
swering (VQA) in perception, query-based planning, or edge deployment of VLA and WBC
execution. The TAIROS platform has already been successfully deployed across multiple
robotic platforms from Unitree, PaXini, Leju, Dobot, and Engine AI, etc., demonstrating its
practical applicability and versatility in real-world scenarios.
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Figure 1: Paradigm shift from sensing-planning-acting to SLAP in the field of robotics.

Figure 2: A framework overview of the TAIROS platform.

2. TAIROS Framework Overview

The field of robotics has undergone a fundamental transformation in its architectural
paradigm, evolving from the classical sensing-planning-action loop to the new SLAP framework
as depicted in Figure 1. The classical sensing-planning-action loop cannot deal with fast
environmental incidents such as tripping by stones during walking and a slipping cup during
grasping, and is thus lack of reactive autonomy. The SLAP framework we proposed in 2018
consists of Sensing, Learning, Action, and Planning. The notable difference is the tight
coupling of Sensing and Action at the lower level, allowing fast reaction to the changing
environment. This is consistent with System 1 in human cognition [51]. Only when dealing
complex tasks, the Planning is called upon, which is consistent with System 2 in human
cognition. The Learning infiltrates every module of Sensing, Action, and Planning.

After years of continuous research and development, our colleagues at Tencent Robotics
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X Lab have refined this framework through persistent iteration. Now it has evolved into a
more comprehensive and robust core technological framework, which we call the SLAP3

system (Sensing-Learning-Action: Perception, Planning, PAction, where PAction stands for
Perception-Action). The TAIROS platform is built upon the SLAP3 framework. See Figure 2
for an overview. TAIROS consists of three main modules that focus on perception, planning,
and execution, respectively. The Embodied Perception Module ingests multi-modal data from
a range of sensors, including robot proprioceptive signals, camera images, depth maps or point
clouds from depth cameras or LiDAR, as well as tactile and force sensor inputs. Using these
inputs, the module reconstructs a dense 3D point cloud, performing object-level geometric
fusion and semantic annotation to generate a hierarchical scene graph. This scene graph
functions as the robot’s long-term memory, enabling efficient information summarization,
querying, and retrieval. By integrating multi-modal sensory information into a hierarchical
and structured format, the robot can continuously and systematically perceive and update
its environment, which in turn provides robust support for advanced reasoning and decision-
making over extended periods. The Embodied Planning Module is an LLM-based reasoning
agent that receives user prompt and environment context from the Embodied Perception
Module, and then performs long-horizon reasoning through MCTS [52], CoT [53], and tool
calling [54], etc., to decompose a difficult task into sub-tasks, each of which can be completed
by calling the Perception-Action (PAction) Module. The PAction Module receives commands
from the Embodied Planning Module and vision-tactile-force-language embeddings from
the Embodied Perception Module to output robot actions. The Perception-Action module
currently contains two specific models for legged robot locomotion and gripper/dexterous-
hand manipulation separately. The locomotion model is trained in simulation using RL and
deployed on real robots through a general sim2real pipeline. The manipulation policy is a
VLA model based on an architecture similar to π0 [39]. In the future, the locomotion and
manipulation models will be unified. The three modules compose the complete embodied
agent for end-to-end deployment over any robot hardware platform that meets a certain
requirement. Meanwhile, each of the three modules can be called independently via self-
contained APIs (service from the cloud) or SDKs (for edge deployment). For example, the
Embodied Perception Module enables text prompt interaction with users, acting like a VLM
for question answering and scene understanding; the Embodied Planning Module can chat
with users and help solving long-horizon decision problem via text responses; the Perception-
Action Module can be deployed in robot hardware for direct locomotion and manipulation
tasks. Please refer to the official site for direct usage: https://tairos.tencent.com/docs.
In the following sections, we will elaborate each module in technical detail.

3. Embodied Perception Module

The Embodied Perception Module is designed to equip embodied robots with advanced
environmental perception and memory capabilities. To this end, we maintain a hierarchical
scene graph that is updated in real time and online, continuously capturing and organizing
information about the robot’s surroundings. This enables the robot to construct and dynami-
cally update a structured, semantic 3D representation of complex and changing environments
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Figure 3: The pipeline of the Embodied Perception Module.

as they are perceived. Through this real-time, online updating process, the robot achieves
robust, up-to-date understanding and interaction within dynamic scenes. The entire pipeline
is depicted in Figure 3.

3.1. Key Frame Selection
The robot acquires environmental observations as continuous temporal signals, such as

sequential RGB-D video frames. However, continuous sampling results in substantial data
redundancy, and the quality of individual frames may be degraded by factors such as motion
blur during robot movement. Processing every frame in real time is both computationally
inefficient and unnecessary. To address these challenges and optimize computational efficiency,
we implement a real-time key frame selection mechanism that identifies and retains only the
most informative and high-quality frames from the observation stream. Specifically, frames
are first considered as key frame candidates if there is significant camera motion—defined
as a translational displacement greater than 0.5 meters or a rotational change exceeding
30 degrees relative to the last selected key frame—or if significant dynamic changes are
detected during periods of static or slow movement, such as the movement of objects or
people within the scene. Each candidate frame then undergoes a rigorous quality assessment,
where image sharpness is evaluated using Laplacian variance analysis to filter out blurred
frames, and content relevance is verified through object detection outputs. Only frames that
meet all motion, dynamic change, and quality criteria are ultimately selected as key frames.
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This multi-stage selection strategy ensures that the system processes only high-value visual
data, thereby maintaining robust and up-to-date environmental perception while significantly
improving the efficiency of the perception pipeline.

3.2. 3D Reconstruction
Based on the selected key frame observations, we first perform real-time 3D reconstruction

of the robot’s surrounding environment, generating a spatially consistent representation of
the observed scene. In parallel, we utilize open-vocabulary 2D object detection models, such
as YOLO-World [10] and Grounding DINO [9], to semantically identify objects within each
frame. The detected objects are then precisely segmented using the Segment Anything Model
(SAM) [7], enabling the extraction of accurate object masks. To ensure robust multi-view
tracking and maintain object identity across different perspectives, we further employ instance
association techniques based on SAM2 [8]. Throughout this process, robot self-occlusions are
systematically filtered out, ensuring that only external scene elements are considered and
thereby enhancing the reliability of the environmental model.

Subsequently, the detection and segmentation results are integrated with the 3D reconstruc-
tion to achieve spatiotemporal semantic consistency across the observed scene. Specifically,
we leverage depth information in conjunction with the camera’s intrinsic and extrinsic pa-
rameters to project detected objects into the world coordinate system, thereby aligning
object-specific point clouds within the 3D reconstruction and estimating the corresponding
Z-axis-aligned oriented 3D bounding boxes. For objects identified as the same instance across
multiple views, we perform point cloud fusion based on both spatial proximity in the world
coordinate system and semantic similarity, consolidating redundant observations into unified
object representations. Through this comprehensive pipeline, the robot is able to extract and
represent the semantic distribution and precise spatial locations of objects in its surrounding
environment, providing a robust foundation for the subsequent construction of a hierarchical
scene graph.

3.3. Scene Understanding
To further enhance the robot’s ability to perceive object attributes, spatial relationships,

and scene types within its environment—and to facilitate the formation of effective scene
memory—we incorporate large-scale vision-language models (VLMs) to provide rich semantic
information at both the object and scene levels. Specifically, we leverage VLMs to query a
variety of object properties, including color, on/off state (such as for lights or refrigerators),
category, orientation, and functional usage. In addition, we utilize the VLM to infer spatial
relationships between objects, such as “upon,” “under,” “near,” “in,” and “contain,” thereby
establishing semantic associations among objects in the scene. For example, we prompt the
VLM to identify functional objects that can serve as surfaces (such as tables or sofas, which
may have other objects placed “on” them) and containers (such as refrigerators, which may
have objects placed “in” them). The VLM is then used to detect objects that exhibit “on”
relationships with these surfaces (e.g., apples and bread on a table) and “in” relationships
with containers (e.g., apples and bread inside a refrigerator). Furthermore, we prompt the
VLM to perform scene clustering, generating scene labels such as “Living Room,” “Bedroom,”
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or “Kitchen,” along with a concise one-sentence description of the scene. This comprehensive
semantic analysis enables a detailed understanding of the spatial organization and object
interactions within the environment.

3.4. Hierarchical Scene Graph
Building upon the extracted spatial relationships and the fused point cloud data, we

construct a comprehensive multi-layered scene graph that captures the hierarchical structure
of the environment. At the object level, 2D object detections are integrated with point cloud
back-projection to generate precise 3D bounding boxes for each detected entity. The vision-
language model (VLM) is employed to extract detailed object attributes, such as category,
color, and functional state, which are combined with the 3D bounding box information to
form the data structure of each object node. In addition, the VLM infers spatial relationships
between objects—such as “on” or “in”—which are encoded as semantic edges connecting the
relevant object nodes, thereby enriching the graph with contextual information about object
interactions.

At the view level, each key frame is represented as a view node, encapsulating information
such as camera pose and associated observations. Object nodes that are visible within a
particular key frame are linked to the corresponding view node through hierarchical edges,
establishing parent-child relationships that connect the object and view levels. Moving up the
hierarchy, the room level abstracts spatial regions or rooms within the environment as room
nodes. The VLM facilitates the clustering of temporally and spatially related views—such
as a sequence of key frames all depicting a kitchen—by linking their respective view nodes
to a single room node via hierarchical edges. At the highest level currently supported, the
floor level, all room nodes are connected to a single floor node, reflecting the assumption of a
single-floor environment in the present implementation.

This multi-layered scene graph provides a structured and hierarchical representation of
the environment, seamlessly integrating object detections, spatial relationships, and semantic
context across multiple levels of granularity. Such a representation not only supports efficient
scene understanding and memory, but also lays a robust foundation for advanced reasoning
and decision-making tasks in robotic applications.

3.5. Downstream Tasks
The hierarchical scene graph is updated online as the robot interacts with the environment

and is kept as long-term memory. The memory supports both direct user interaction via text
prompt and calling by the Embodied Planning Module. For downstream task support, a
hybrid retrieval module processes user or Embodied Planning Module’s queries via efficient
retrieval (including both spatial retrieval and semantic reasoning to infer implicitly related
objects). Finally, the retrieved entities and their spatial relations are formatted in BDDL [55],
which facilitates integration with the planning system. An example of the BDDL format is
as below.

(:objects
box.n.01_1 - box.n.01
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chair.n.01_1 chair.n.01_2 chair.n.01_3 chair.n.01_4 - chair.n.01
coffeetable.n.01_1 - coffeetable.n.01
creditcard.n.01_1 - creditcard.n.01
diningtable.n.01_1 - diningtable.n.01
drawer.n.01_1 - drawer.n.01
floor.n.01_1 - floor.n.01
......
television.n.01_1 - television.n.01
vase.n.01_1 - vase.n.01
watch.n.01_1 - watch.n.01
window.n.01_1 window.n.01_2 window.n.01_3 - window.n.01

)

(:init
(open box.n.01_1)
(toggled_on floorlamp.n.01_1)
(open laptop.n.01_1)
(toggled_on lightswitch.n.01_1)
(ontop sofa.n.01_2 chair.n.01_4)
(ontop remotecontrol.n.01_1 coffeetable.n.01_1)
(ontop box.n.01_1 coffeetable.n.01_1)
(ontop keychain.n.01_1 coffeetable.n.01_1)
(ontop watch.n.01_1 coffeetable.n.01_1)
.....
(inroom window.n.01_1)
(inroom window.n.01_2)
(inroom window.n.01_3)

)

This workflow bridges low-level perception with high-level scene abstraction, enabling
robots to reason about environments in both geometric and semantic dimensions.

The system processes user queries through a structured pipeline where the LLM first
interprets the input instruction to determine whether it falls within the scope of multi-modal
perception capabilities. If the query lies outside this operational domain, the system directly
generates an appropriate rejection response. For valid queries, the LLM dynamically selects
the optimal query modality, currently including options such as current field of view search,
directional/distance-based search, room-specific search (either current or designated), or global
environment search while simultaneously determining the corresponding query parameters.
The retrieved results, combined with the original user instruction, are then formatted into a
comprehensive prompt for the LLM, which subsequently generates both a natural language
response and visualizable outputs (such as target object IDs for 3D visualization or navigation
point computation). This integrated approach enables context-aware information retrieval
while maintaining robust rejection handling for out-of-distribution requests.

11



Figure 4: The pipeline of the Embodied Planning Module.

4. Embodied Planning Module

The Embodied Planning Module plays a crucial role in the overall system, serving as the
interface that directly receives user instructions through voice interaction while simultaneously
processing real-time multi-modal perceptual data from the Embodied Perception Module
for semantic understanding. Meanwhile, it coordinates task execution by commanding the
Perception-Action Module to ensure successful robotic operation, with its complete workflow
illustrated in Figure 4.

4.1. Router
Upon receiving a voice instruction, the module first converts it into natural language

text via automatic speech recognition (ASR), then employs a router LLM model for binary
classification with linguistic output (e.g., generating “simple” or “hard” labels) to categorize
task complexity. Simple tasks, such as direct verbal responses or basic action commands
for the Perception-Action Module, are handled by the Fast Embodied LLM, while complex
tasks requiring long-horizon planning are delegated to the Planning Embodied LLM. This
bifurcated architecture optimizes computational efficiency and interaction delay by allocating
resources according to task demands.

4.2. Planning Embodied LLM
The Planning Embodied LLM functions as a sophisticated reasoning agent, integrating

several state-of-the-art LLM-based techniques, including tool calling [54], Chain of Thought
(CoT) [53], MCTS, RL, etc. We elaborate each valuable technique used in the system in the
following.
Tools. The tool-based approach plays a pivotal role in LLM-based agent, where we propose
multiple specialized functions. The Plan tool decomposes complex tasks into executable sub-
tasks for the Perception-Action Module, while the Action tool generates meta actions at the
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sub-task level, such as navigation commands for locomotion models or language instructions for
VLA models. The Error Handle tool triggers re-planning or re-acting when sub-task execution
fails, ensuring robustness. Additionally, the Visual QA tool facilitates interactive queries with
the Embodied Perception Module to retrieve relevant visual information, and the Web Search
tool fetches task-related knowledge from the internet. For environmental interaction, the
Explore tool enables active exploration (e.g., object search), and the Translation tool handles
multilingual communication. A Critic tool, implemented as a VLM module, evaluates task
progress and robot states to guide decision-making. Finally, the Terminate tool signals task
completion. Together, these tools enable the agent to perform long-horizon planning with
adaptive reasoning and recovery mechanisms.
Active Exploration. To further enhance active exploration capability in long-horizon tasks,
we integrate a multi-turn multimodal reinforcement learning framework into the Planning
Embodied LLM, specifically optimizing the strategy generation of the Explore tool. This
approach significantly boosts the agent’s active search and memory retrieval capabilities in
unknown environments through two key designs. First, multi-turn interactive exploration:
upon receiving initial task instructions, the agent can independently determine multiple rounds
of exploratory actions (e.g., <get_memory> to retrieve historical observations, <action> to
perform physical interactions). The agent dynamically adjusts the direction of each round
of actions based on the current scene graph and visual observations, continuing until the
termination condition is triggered. This mechanism transforms exploration from a one-
time blind search into an adaptive process with contextual memory. Second, reward-driven
exploration optimization: we have designed a fine-grained reward function that incorporates
multi-dimensional metrics such as object-matching F1-score, exploration path efficiency, and
format compliance. In particular, an “exploration reward” is introduced to quantitatively
evaluate the environmental feedback from each round of actions, encouraging the agent to
prioritize interactions with regions that maximize information gain.
Interruption. There are two types of interruptions: instruction interruption and action
interruption. Instruction interruption occurs when the current instruction is in the process
of tool invocation or queuing, but action execution has not yet started. At this point, the
instruction processing is interrupted, and the result is stored in the historical instructions.
Action interruption occurs when the task initiated by the instruction sends an action sequence
and is awaiting the result. An additional interruption action is sent to stop the robot’s actions
promptly.
Instruction Tracking. The framework systematically manages the user input instruction
process, recording reflection content, tool invocation status, task decomposition, and execution
results. For any output action sequence, text response, or system message, the corresponding
instruction ID is bound. Once instruction processing is complete or interrupted, the data is
stored in the historical memory.
Agentic LLM. We propose two agents: a reactive agent based on a 32B base model,
which processes historical information following instructions, selects the appropriate tools,
and generates the corresponding tool parameters. The results of tool calls, as well as any
exceptions encountered during tool invocation, are handled through reflection by this agent.
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Figure 5: Ablation study of incorporating MCTS.

Any user’s instruction is processed until the Terminate tool is invoked or the instruction
is interrupted. A standard process-oriented (SOP) agent invokes tools following a defined
procedure. When the current task needs to be broken down into actions from mid-level
task, the Action tool is invoked. If errors occur during the execution of the actions, the
Error-Handle tool is called. Upon completion of the task, the Critic tool is invoked to assess
whether the task execution aligns with expectations.
Search. In embodied tasks, particularly execution in real-world or simulated environments,
obtaining ground truth trajectories is extremely difficult, and manual labeling is costly. As a
result, acquiring a large-scale supervised fine-tuning (SFT) dataset becomes a major challenge.
Once a model has acquired basic capabilities with a small amount of data, self-improvement
through generating its own training data becomes a reasonable approach. However, planning
problems can still be complex, especially when dealing with long sequences or rare actions,
as simple random sampling may fail to yield successful trajectories. MCTS addresses this by
simulating future states and evaluating action paths through a tree structure, allowing for
more informed decision-making. In the evaluation stage, the value is calculated via a trained
value model and using MC rollouts. The action model, together with MCTS, can generate
trajectories with higher quality. Furthermore, by establishing a self-improving loop where
MCTS produces better trajectories, which are then filtered and used to train the model,
leading to even better trajectories. We have observed that after 5 to 10 iterations, the model’s
performance continues to improve. We conduct experiments with a 7B Base model and on
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Figure 6: Ablation study of incorporating RL training.

an embodied symbolic simulation environment. With the same tasks, this final performance
in terms of pass rate outperforms all the baselines, including closed-source LLMs and as well
as the latest reasoning models. Figure 5 shows the comparison results of various models.
RL. The emergence of pure RL training paradigms on LLMs, such as DeepSeek-R1 [56],
provides another path for training embodied agents. It learns to understand the environment
(i.e., transitions) and solve tasks through exploration, interaction with the environment, and
reward feedback. We started directly from a general model without going through embodied
task-specific SFT before proceeding with PPO/GRPO. For reward feedback, we provided
sparse outcome rewards generated by a CoT-Reward Model. The trained reward model scores
based on the effectiveness, rationality, and efficiency of the final execution, producing an
overall score. Additionally, if an error occurs during execution, there is an extra penalty.
We used the Verl framework [57] and integrated a large number of cloud-based simulations,
providing execution status and results via headless execution for RL rollouts. We used a
7B model as the base model and AI2Thor (ALFRED) as the environment. Experimental
results in Figure 6 show that RL training can effectively improve the model’s capabilities,
and outperforms other closed-source and open-source models, as well as some prompting
based method that specifically designed for ALFRED.
Reward Model. The Reward Model plays a crucial role in the training process of RL. We
leverage the CoT Reward Model to score the execution trajectories of agents. A trained 7B
model, through deep thinking, primarily evaluates a trajectory based on three key aspects:
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1) Effectiveness (task completeness - for example, if the task is to fry an egg, the egg needs
to be cooked in the pan); 2) Rationality, such as deeming the trajectory irrational if it
contains illegal actions during execution; 3) Efficiency, which involves avoiding redundant
and ineffective actions or explorations. Ultimately, we generate an overall score based on
these three perspectives, serving as an evaluation of the trajectory’s execution effect.

4.3. Bridging Sub-task and Action
The action model, after extensive data and RL training, is capable of executing both

simple tasks (e.g., “Navigate to the fridge”) and more complex ones (e.g., “Take all the fruits
from the fridge and place them on the table”). In the process of sub-task decomposition,
the planning model must determine an appropriate granularity for the tasks (along with
descriptive text), ensuring that the action model can execute them effectively while avoiding
excessive decomposition. A task that is too finely broken down could lead to unnecessary
complexity and suboptimal performance. Inspired by the Meta Plan Optimization (MPO)
approach [26], we optimize the planning model by aligning it with a fixed, trained action
model. Initially, we manually curate a small set of planning data (a few dozen examples) and
train the planning model via SFT to develop basic planning capabilities. Following this, the
planning model, operating at a higher temperature, performs extensive sampling for each
task. These generated plans are then executed in simulation by the action model. A critic
evaluates the execution’s success, and based on the results, we refine the planning model
through DPO. The criteria for positive and negative examples are as follows:

Positive Example: Successful execution with fewer steps.
Negative Example: Execution failure

Through this training process, our planning model integrated with the action model in
benchmark object-interaction tasks improves success rate significantly. Compared to the
baseline SFP version initialized with the same 32B base model, the success rate improved
from 37.3% to 45.7%. The trained planning model’s thinking process is as follows:

<think>
The task is to move the book to the bed and then move the phone to where
the book was originally located.

KEY OBJECTS:
- book.n.01_1 (ontop desk.n.01_1)
- bed.n.01_1 (ontop floor.n.01_1)
- cellphone.n.01_1 (ontop desk.n.01_2)

The robot needs to:
1. Pick up the book.n.01_1 from desk.n.01_1 and place it on bed.n.01_1.
2. Pick up the cellphone.n.01_1 from desk.n.01_2 and place it on desk.n.01_1
where the book was originally located.
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The robot must ensure that the book is moved to the bed before moving the
phone to the desk.
</think>

<mid_tasks>
1. Pick up the book.n.01_1 from desk.n.01_1 and place it on bed.n.01_1.
2. Pick up the cellphone.n.01_1 from desk.n.01_2 and place it on desk.n.01_1
where the book was originally located.
</mid_tasks>

4.4. Memory and Context
In Figure 4, the scene memory is obtained from the Embodied Perception Module and kept

in RAG as persistent memory. The interaction memory refers to the history of interactions,
including dialogues, actions, tools used, and some special feedback (e.g., the task failure
information), along with the timestamp of each event. Robot info includes robot types
(e.g., humanoid robots with two arms, quadrupedal robots, etc.), robot functions (such as
navigation, grasping, etc.), and robot descriptions (e.g., name and owner). The interaction
memory and robot info are organized as prompt context.

4.5. Benchmark
Furthermore, we have developed a comprehensive benchmark specifically designed for

evaluating long-horizon and challenging embodied decision-making tasks. This benchmark
comprises 1,011 task samples distributed across seven primary categories: Object-Interaction
(363 samples, 35.9%), QA-Attribute (144 samples, 14.2%), QA-Alignment (131 samples,
13.0%), QA-Self-awareness (122 samples, 12.1%), QA-Spatial (104 samples, 10.3%), Navigation
(80 samples, 7.9%), and QA-Temporal (67 samples, 6.6%). It supports three distinct robot
configurations: Single-armed Robot, Dual-armed Robot, and Mobile Base (2.8%), and is
primarily tested in four typical indoor environments: Kitchen (39.9%), Bedroom (29.0%),
Living Room (22.3%), and Bathroom (8.7%). The evaluation framework is designed for end-
to-end assessment, providing a multi-dimensional analysis that includes task comprehension,
action sequence generation, reflective capability, task success rate, and user satisfaction.
Additionally, it incorporates a hierarchical scoring system tailored to different task categories,
employing metrics such as exact match, answer similarity, LLM-based scoring, and success
rate to ensure a thorough and nuanced evaluation of embodied AI systems.

4.6. Overall Evaluation
We conducted evaluations using a comprehensive pipeline specifically designed for em-

bodied tasks, covering the entire process from task understanding to user satisfaction. This
end-to-end evaluation encompasses key phases including goal state prediction, task rejection,
action sequence generation, reflective abilities, tool usage, and task completion. Evaluation
is performed only on the dimensions listed in each sample’s evaluation dimensions. The
scoring metrics are described as follows:
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Task Understanding. Goal Task Understanding: compute the semantic similarity between
model-predicted task and ground truth task; Goal State Prediction: semantic similarity
between generated goalState and ground truth; Task-Related Scene Graph Accuracy: exact
match comparison (ignoring order) after normalization and regular expression extraction of
scene graph entries.

Let sim(x, y) be the cosine similarity between two text embeddings x and y, and EM(x, y)
the exact match score (1 if match, else 0). Define task understanding score Sunder as:

Sunder =
1

3
(sim(task, gt_task))

+
1

3
(sim(goalState, gt_goalState))

+
1

3
(EM(sceneGraph, gt_sceneGraph)) (1)

Task Rejection Accuracy. Compare the boolean field acceptTask with the ground truth.
The score Srej is:

Srej = EM(acceptTask, gt_acceptTask) (2)
Tool Usage. Match the correct tool call (e.g., get_time(), vqa(text), weather()) and
verify parameter correctness and simulation success:

Stool =
1

2
(Match(tool) + Success(execution)) (3)

Action Sequence and Task Completion. Let A be the predicted action sequence and G
the ground truth sequence. Define:

• Success Rate (Succ.): Fraction of tasks completed successfully.

• Goal Condition Success (GcS): Fraction of predicates in final state matched to the goal.

• Success weighted by Path Length (SPL):

SPL =
1

|D|

|D|∑
i=1

SiLi

max(Pi, Li)
(4)

where Si is success (1 or 0), Li is the length of optimal path, and Pi is path length taken.
These scores are averaged to form Saction:

Saction =
1

3
(Succ. + GcS + SPL) (5)

Certain subcategories require LLM-based grading for Saction, using structured prompts
incorporating ground truth and prediction.
Answer Similarity (QA). Depending on category and subcategory:

Sqa =

{
sim(answer, gt_answer) if similarity-based
LLMScore(answer, gt_answer) if model-based

(6)

For dimensions using LLM evaluation, the following prompt is employed:
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You are a careful evaluator. Please rate the following response (score 0 to
1) with respect to the reference answer, based on correctness, relevance,
and completeness. \textbackslash n\textbackslash nReference Answer: [ground
truth]\textbackslash n\textbackslash nModel Answer: [prediction]
\textbackslash n\textbackslash nScore:

Reflective Ability. Defined as the proportion of failed actions that were corrected with a
successful follow-up, forming the score Sref:

Sref =
Num(Effective Reflections)

Num(Failure Events)
(7)

Alternatively, LLM-based grading can assess whether recovery was adequate.
Total Score. We define a weighted total score for each sample:

Stotal =
∑

i∈Denabled

wiSi (8)

where Denabled is the set of active evaluation dimensions, and wi the weight (equal weight by
default or set via config). All scores are reported per subcategory and aggregated by category.
For dimensions not applicable (e.g., wi = 0), they are omitted from Stotal. This structured
framework enables in-depth evaluation and fair comparison across baselines such as ReAct
and plan-and-execute, offering insight into performance across all critical embodied reasoning
dimensions.

We compared the ReAct and plan-and-execute planning frameworks using different models.
ReAct is a framework that combines reasoning and action in a recursive manner, where
the model is able to adaptively react to the environment based on intermediate feedback.
Plan-and-execute refers to a framework that focuses on first generating a high-level plan,
followed by execution of the individual steps in the plan, often leveraging symbolic reasoning
and task decomposition. This framework is more structured and hierarchical, in contrast to
the flexibility of ReAct’s recursive approach. We tested models such as GPT-4o, DeepSeek-
R1, Qwen-Max-Latest, Robobrain-7B/32B, among others, within both frameworks. For
various tasks, such as Object Interaction, Alignment, etc., we conducted evaluations using a
comprehensive pipeline specifically designed for embodied tasks, covering the entire process
from task understanding to user satisfaction. This end-to-end evaluation encompasses key
phases such as goal state prediction, task rejection, action sequence generation, reflective
abilities, tool usage, and task completion. The framework also incorporates a rich and
detailed scoring system that evaluates the models’ performance across multiple dimensions.
For instance, LLM-based scoring assesses how well the model’s responses align with the
expected outputs. Additionally, similarity metrics are used to compare generated responses
to reference answers, including exact match and partial match evaluations. Task completion
rates, including sub-task completion rates and execution path efficiency, are also measured.
These metrics provide a quantitative assessment of how effectively the model generates
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coherent, accurate, and efficient responses. Furthermore, the task rejection component
ensures that models can accurately identify tasks outside their capabilities, a crucial skill for
real-world applications. The overall performance comparison is given in Table 1.

Table 1: Overall performance of all compared models. The scores represent the weighted
total scores of all active evaluation dimensions of each model (row) under each task (column).

Models Performance Metrics ↑
Object Interaction Alignment Self-awareness Attribute Spatial Temporal Navigation

Tairos-Planing 60.82 66.74 74.38 66.07 52.62 53.44 62.09
GPT-4o+ReAct 44.06 70.00 71.69 60.70 39.10 48.13 58.00
DeepSeek-R1+ReAct 45.93 67.54 71.66 60.99 38.24 46.51 60.82
Claude-4.0-Sonnet+ReAct 50.56 69.19 68.14 65.87 48.90 51.87 57.98
Gemini-2.5-Pro+ReAct 48.01 37.33 51.95 64.38 49.07 48.09 53.16
Qwen-max-Latest+ReAct 43.90 58.60 63.91 56.90 38.90 47.60 60.50
Robobrain-7B+ReAct 36.85 20.76 25.33 49.90 50.70 41.02 52.69
Robobrain-32B+ReAct 37.98 21.43 26.12 51.30 50.92 42.35 54.40
GPT-4o+plan-and-execute 40.30 70.70 73.90 57.90 35.90 46.10 58.80
DeepSeek-R1+plan-and-execute 45.80 67.40 71.10 60.80 37.90 46.30 57.80
Claude-4.0-Sonnet+plan-and-execute 49.54 69.88 68.74 64.93 48.89 50.25 56.36
Gemini-2.5-Pro+plan-and-execute 47.09 37.61 50.89 62.17 49.24 47.72 52.87
Qwen-max-Latest+plan-and-execute 42.50 58.30 64.14 55.60 36.80 47.20 59.10
Robobrain-7B+plan-and-execute 35.47 20.52 25.68 49.43 49.02 39.63 51.64
Robobrain-32B+plan-and-execute 36.93 22.21 27.31 49.63 50.40 43.23 53.38

5. Perception-Action Module

The Perception-Action Module adopts a dual-model architecture consisting of a VLA
model for manipulation tasks and a simulation-based RL training pipeline for locomotion
tasks, reflecting the prevailing technical approaches for these distinct task categories in the
field. In our current system implementation, the manipulation model and locomotion model
remain decoupled. This design ensures operational clarity while requiring careful coordination
at the command level. The Embodied Planning Module addresses this by sequentially
outputting corresponding commands for each model in its task execution pipeline, thereby
preventing conflicting calls and maintaining system stability during concurrent manipulation
and mobility operations. This architecture provides modular flexibility while ensuring reliable
task execution through explicit command sequencing.

5.1. VLA for Manipulation
Our VLA model builds upon the foundational architecture of the π0 model [39], incor-

porating improvements with data pipeline augmentation, 3D information grounding, and
adapting to more heterogeneous application scenarios, including industrial manipulation and
domestic service tasks.
Data Acquisition. We aim to train VLA models using data collected via both teleoperation
and UMI [35] handheld gripper. We mainly introduce the UMI data training below. A critical
goal is achieving cross-embodiment generalization, where policies learned from UMI data
could transfer effectively to any other robotic arms. However, a significant visual domain
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Figure 7: An illustration of the VLA model for manipulation.

gap exists between the UMI overhead-camera data and data captured by a target robot’s
overhead camera. This gap stems primarily from the prominent presence of the human arm
in UMI data, compared to the robotic arm seen in target robot data, which makes them
visually distinct from each other. Furthermore, the distinct kinematic configurations, the
human arm typically operating horizontally versus many robotic arms moving vertically,
create fundamental differences in background appearance and arm orientation. This visual
discrepancy poses a challenge for visuomotor policies to transfer across embodiments. To
mitigate this gap, we adopt a data editing pipeline similar to [58]. Our approach first detects
and segments the human arms in UMI video frames. We achieve this using text-prompt
open-vocabulary detection (Grounding DINO) followed by precise instance segmentation
(SAM2). Then, we remove the arm region and restore the background plausibly, using the
video inpainting model ProPainter [59]. Crucially, we use the gripper pose from UMI data
to calculate the joint angles of the target robotic arm by solving inverse kinematics. Then,
we leverage the known overhead camera extrinsics and calculated joint angles to render this
virtual robotic arm composited onto the inpainted background, aligning its end-effector pose
precisely with the recorded UMI gripper pose. This process generates synthetic overhead-view
sequences that visually simulate the robots’ view, significantly enhancing visual consistency
for cross-embodiment policy transfer.
3D Alignment. Multi-view images are widely used in recent VLA approaches due to their
implicit encoding of 3D information, which is crucial for spatial manipulation. However, learn-
ing robust multi-view representations typically requires large-scale real-world teleoperation
data, which is often limited in robotics. To inject stronger cross-view spatial understanding
into VLA models, we leverage external 3D visual representations, rather than relying solely on
the VLA models to learn them independently. Specifically, we adopt the 3D foundation model
VGGT [60], which has shown strong 3D perception capabilities from 2D images, as a teacher
model to guide VLA in learning powerful 3D visual correspondence. Nonetheless, VGGT is
originally trained on scene-level datasets with moderate pose variation and overlapping views,
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while robotic settings, particularly those using head-mounted and wrist-mounted cameras,
involve much greater variation in pose and appearance. This domain gap hinders the direct
applicability of VGGT to embodied tasks.

To bridge this gap, we generate a multi-view dataset of 58K photorealistic synthetic
images, where a simulated Franka robot manipulates various objects in diverse indoor scenes.
The dataset provides precise labels for multi-view camera poses and point cloud alignment.
We use this high-quality dataset to fine-tune VGGT, enabling it to adapt to the head–wrist
camera configuration and demonstrate zero-shot generalization in our real-world dual-arm
robot scenarios. The fine-tuned VGGT is then used to generate cross-view-consistent features,
which supervise the output hidden states of the prefix VLM model via an alignment loss. This
guidance enables the VLM model to efficiently learn more powerful 3D visual representations
from the limited robotics dataset. However, pre-trained VLM models are typically trained
on large-scale internet data and encode strong semantic alignment between images and text.
Directly aligning VLM features with VGGT features may lead to a loss of this large-scale
pre-trained knowledge. To mitigate semantic forgetting during training, we therefore continue
to train the VLM on VQA and object localization tasks using a next-token-prediction loss in
parallel. Optionally, our method can leverage depth images as a known prior when available,
providing additional guidance for the network to produce more accurate predictions with
auxiliary information. Depth modality is processed by a block-specific MLP and is added
token-wise at the middle of the transformer block.

The entire framework is trained end-to-end. VGGT is used only during training and
removed at inference. This design enables the robot to better reason over diverse image
streams (e.g., stereo, head, and wrist views), enhancing its understanding of 3D spatial
relationships in complex manipulation tasks.
Applications. We utilize the Dobot X-Trainer robot, a dual-arm system equipped with
wrist-mounted cameras on each gripper and an externally mounted overhead camera. The
task is to enable the robot to accurately grasp essence bottles and insert them vertically
into a container that features a hole at its bottom, with a diameter closely matching that of
the bottle. This setup poses a significant challenge due to the tight clearance of the hole,
requiring high-precision manipulation. Moreover, the initial positions of both bottles and
containers are randomized, demanding strong spatial generalization from the model. To
support post-training, we collect 1,000 demonstration trajectories. The deployed VLA model
can achieve over 80% success rate. We also employ the PaXini Tora One humanoid robot as
our experimental platform to address a representative industrial task involving the packing
of multiple bottles with varying sizes and appearances (including laundry detergent and
water bottles) on a moving conveyor belt assembly line. For this specific task scenario, we
collected a dataset comprising 300 complete execution trajectories. Subsequent post-training
on our base model using this dataset demonstrates significant performance improvement,
achieving an average task (packing three objects as one task) success rate over 80% in the
target industrial packing application. This result validates both the robot’s capability in
handling dynamic industrial manipulation tasks and the effectiveness of our data-driven
training approach for complex robotic operations. In addition to teleoperation data, we
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Figure 8: An illustration of the locomotion model.

also leverage data collected using hand-held grippers for model finetuning.This approach
enables the acquisition of high-quality, dexterous manipulation trajectories that are otherwise
challenging to obtain through teleoperation alone. We deploy and evaluate the fine-tuned
model on the JAKA-K1 robot, which is equipped with the same type of gripper used during
data collection (TEK CTAG2F90-C). Owing to the increased dexterity afforded by hand-held
data collection, we are able to extend the previous packing task by introducing a bimanual
handover step, in which bottles must be precisely transferred from one gripper to the other
before insertion. We collect 500 demonstrations, enabling the fine-tuned model to achieve over
80% success rate. These results show that our hand-held gripper data enables fine-grained
skill learning and successful transfer to real robots.

5.2. RL for Locomotion
The locomotion model is trained through simulation-based RL before being deployed

to physical robots via a sim2real approach. When discrepancies emerge between simulated
and real-world performance, we employ a systematic methodology involving real-robot data
collection combined with techniques such as ASAP [50] and actuator modeling [61] to quantify
and bridge the reality gap. These discrepancy models are subsequently incorporated back into
the simulation training loop to refine the locomotion policy. We have developed a generalized
training framework with an integrated real-robot data feedback pipeline, designed to maintain
adaptability across diverse robotic morphologies while minimizing hardware-specific parameter
tuning. This architecture has demonstrated robust performance across multiple commercial
platforms including Unitree G1, Leju Kuavo, Pudu D9, Turling RX-V3, and Lexiang M001
robots. Please refer to our official website for demonstration videos.

6. Conclusion

We present TAIROS, an integrated platform comprising three core modules: a multi-modal
perception module, a long-horizon planning module, and a unified perception-action module.
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These components are designed to operate independently through standardized APIs/SDKs
and collectively as a complete agent, providing robots with comprehensive end-to-end task exe-
cution capabilities. TAIROS is specifically engineered to address practical industrial demands,
supporting diverse robotic applications through its flexible architecture. The platform enables
robot manufacturers to offer embodied intelligence services via standardized interfaces, signif-
icantly lowering the development barrier for third-party integration. Additionally, TAIROS
incorporates cloud-based simulation capabilities that allow instant deployment of virtual
environments for planning and perception model validation, complete with pre-configured
robotic agents, scenarios, and tasks to accelerate capability demonstration. Looking forward,
the platform will leverage Cloud inference clusters to deliver a fully integrated development
ecosystem encompassing data collection/annotation, algorithm training, model validation,
and OTA deployment to physical robots - creating a closed-loop workflow that enhances
research efficiency and industrial adoption in embodied intelligence. Currently, TAIROS has
demonstrated compatibility with diverse robotic morphologies, including bipedal/wheeled
humanoids, quadrupeds, and robotic arms, supporting various end-effectors from grippers to
dexterous hands. The platform has been successfully deployed in collaboration with multiple
robotics companies in industries including manufacturing, automotive, home appliances, and
exhibition services, validating its practical applicability across sectors.
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